Cardiac Potassium Channels: Physiological Insights for Targeted Therapy
نویسندگان
چکیده
The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K+ channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K+ channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them.
منابع مشابه
Cardiovascular KCNQ (Kv7) potassium channels: physiological regulators and new targets for therapeutic intervention.
Potassium channels play an important role in electrical signaling of excitable cells such as neurons, cardiac myocytes, and vascular smooth muscle cells (VSMCs). In particular, the KCNQ (Kv7) family of voltage-activated K(+) channels functions to stabilize negative resting membrane potentials and thereby opposes electrical excitability. Of the five known members of the mammalian Kv7 family, Kv7...
متن کاملMajor channels involved in neuropsychiatric disorders and therapeutic perspectives
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptib...
متن کاملCeramide modulates HERG potassium channel gating by translocation into lipid rafts.
Human ether-à-go-go-related gene (HERG) potassium channels play an important role in cardiac action potential repolarization, and HERG dysfunction can cause cardiac arrhythmias. However, recent evidence suggests a role for HERG in the proliferation and progression of multiple types of cancers, making it an attractive target for cancer therapy. Ceramide is an important second messenger of the sp...
متن کاملMuscle KATP channels: recent insights to energy sensing and myoprotection.
ATP-sensitive potassium (K(ATP)) channels are present in the surface and internal membranes of cardiac, skeletal, and smooth muscle cells and provide a unique feedback between muscle cell metabolism and electrical activity. In so doing, they can play an important role in the control of contractility, particularly when cellular energetics are compromised, protecting the tissue against calcium ov...
متن کاملVoltage-gated potassium channels in cell proliferation.
It is commonly accepted that cells require K(+) channels to proliferate. The role(s) of K(+) channels in the process is, however, poorly understood. Cloning of K(+) channel genes opened the possibility to approach this problem in a way more independent from pharmacological tools. Recent work shows that several identified K(+) channels are important in both physiological and pathological cell pr...
متن کامل